Design and Analysis of Metallic Photonic Band Gap Cavity for a Gyrotron
نویسنده
چکیده
Brazilian Microwave and Optoelectronics Society-SBMO received 11 May 2012; for review 18 May 2012; accepted 20 Aug 2012 Brazilian Society of Electromagnetism-SBMag © 2012 SBMO/SBMag ISSN 2179-1074 Abstract — Design and analysis of a 35 GHz metal photonic band gap (PBG) resonant cavity operating in the TE041-like mode has been presented. The dispersion characteristics of a 2D metal PBG structure comprising of triangular array of rods has been obtained using FDTD method. Global band gap regions have been obtained to be used for the PBG cavity design. A mode map has been also generated to examine the occurrence of the possible modes in the PBG cavity. Electromagnetic simulation of the designed PBG cavity has been performed to study the operating modes and quality factors. Role of the number of metal rods layers around the defect in PBG structure has also been illustrated for confining the desired mode and deciding the diffractive quality factor. PBG cavity results have been compared with the analogous cylindrical cavity for the designed mode along with the possible nearby modes to examine the mode competition. It has been found that the mode competition has been successfully reduced in designed PBG cavity and nearly a single mode operation is achieved. It is hoped that present study would be useful for the application of the metal PBG structures in the Gyrotron devices to alleviate the mode competition problem while operating in the higher order modes.
منابع مشابه
Design of Photonic Crystal Resonant Cavity Using Overmoded Dielectric Photonic Band Gap Structures
An overmoded photonic crystal resonant cavity with two dimensional dielectric lattice structures is proposed and simulated. The dominant mode is a higher-order TM03-like at the frequency of 31.14 GHz, the fundamental mode and most other modes are not supported by the cavity. The structure would be potential for application in accelerator, gyrotron and klystron in Ka-band. DOI: 10.2529/PIERS0610...
متن کاملPhotonic-band-gap resonator gyrotron.
We report the design and experimental demonstration of a gyrotron oscillator using a photonic-band-gap (PBG) structure to eliminate mode competition in a highly overmoded resonator. The PBG cavity supports a TE(041)-like mode at 140 GHz and is designed to have no competing modes over a minimum frequency range delta omega/omega of 30% about the design mode. Experimental operation of a PBG gyrotr...
متن کاملDesign and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals
In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...
متن کاملPhotonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals
We experimentally investigated the influence of positional disorder on the photonic band gap, defect characteristics, and waveguiding in two-dimensional dielectric and metallic photonic crystals. Transmission measurements performed on the dielectric photonic crystals have shown a stop band even if a large amount of disorder was introduced to these structures. On the other hand, the photonic ban...
متن کاملDesign of Photonic Crystal Polarization Splitter on InP Substrate
In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55mm wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...
متن کامل